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BLUF
= Business Problem

This paper investigates several potential factors that may contribute to the value of owner-occupied
homes. Purchasing a home is still one of the most significant expenditures that people make. Our study is
to predict house selling values in Boston using a variety of residential property factors. Individuals may
be able to use the information gathered to assist them in making better selections when purchasing a
home. This allows consumers to make the most of their money while staying within their financial
constraints. The findings could be used by a real estate agent to increase the likelihood of a sale by
correctly marketing key features. We'd focus on descriptive and predictive analytics, as well as
suggestions for obtaining more data so that additional tests could be run to optimize the purchase.

= Dataset

The dataset for this project was provided by Kaggle was come up with 14 variables in 506 records. The
attribute information input features are as follows: 1) CRIM: per capita crime rate by town; 2) ZN:
proportion of residential land zoned for lots over 25,000 sq.ft.; 3) INDUS: proportion of non-retail
business acres per town; 4) CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise);
5) NOX: nitric oxides concentration (parts per 10 million) [parts/10M]; 6) RM: average number of rooms
per dwelling; 7) AGE: proportion of owner-occupied units built prior to 1940; 8) DIS: weighted distances
to five Boston employment centers; 9) RAD: index of accessibility to radial highways; 10) TAX: full-
value property-tax rate per 10,000[/10k]; 11) PTRATIO: pupil-teacher ratio by town; 12) B: The result of
the equation B=1000(Bk - 0.63)"2 where Bk is the proportion of blacks by town; 13) LSTAT: % lower
status of the population.

The output variable is MEDV: Median value of owner-occupied homes in 1000's[k].
* Final Recommendation

Using two regressors (the Random Forest Regressor and XGB Regressor), we find lower status of the
population (LSTAT) is a significant driver of real estate value in Boston. Number of rooms and
Crime Rate are also important, with price decreasing, respectively increasing with Nitric Oxides
Concentration, respectively CHAS. The results of the two models are very similar, XGB regressor has
a better performance. But there are some discrepancies in the explain ability analysis of them.

Analysis

= EDA
Firstly, we run the EDA to check the shape and summary of the dataset. Then check the skewness and
kurtosis. We find out that CRIM has both high skewness and kurtosis, further skewness correction
needed in the data preprocessing stage. Correlation and covariance matrix can tell the relationship
between each variable.



Dataset Correlation Hoatmap
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There is no missing value and duplicates in this dataset, so imputation or drop data are not required.

Data Preprocess

Based on the EDA results, all variables in this Boston house price dataset are numerical variables,
thus, dummy encoding is also no need to implement. Then, we use the Skewness Auto Transform
function to do the skewness correction for all the variables. Here is an example variable CRIM
contrast before and after skewness correction (CRIM skewness: 5.22). Meanwhile, Tukey rule is used
to deal with outliers.
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The next step is scaling & holdout out the sample splitting the dataset into a training set and testing
set on an 80-20 proportion. The shape of X and y are (506, 13), (506, 1); the shape of training set and
test set are (404, 14), (102, 14) respectively. After split the dataset, we do the standardization, Grid
Search a Random Forest, and fit Random Forest Regressor on holdout sample. Find out that LSTAT
is the most important variable.

High
s I LSTAT
o [ RM
criv [ CRIM
nox [N NOX
rrratio [ PTRATIO .
ois [l Dis 73
Tax Il TAX e
ace Il AGE g
sl 8
wous Il INDUS
w0 | RAD
. N
as CHAS
! | ! | | -1o -05 0o s 10 o
0.0 01 02 03 04 SHAP value (impact on model output)

mean(|SHAP value|) (average impact on model output magnitude)



o Random Forest

We plot the Partial Dependence, PDP & ICE plots with Random
Forest Regressor Model. From the plots, there are no significant
change in the partial dependence plot.

Additionally, home values appear to generally decline in value
with LSTAT and increase above a standardized latitude of
roughly -1. Home values appear to generally increase in value
with RM and increase above a standardized latitude of roughly 1. ... ... o= ..
The latitude story is not compatible with the partial dependence —_—
plot for ZN, CHAS, RAD and PTTRATIO. The ICE plots do not :
show much separation between the different instances.
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The LIME indicates LSTAT, RM and TAX have negative relationship with house price, and rest of
them are positive.

o XGB
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PD? for feature “LSTAT* PDP for feature "PTRATIO"
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Then we plot the decision tree surrogate models for XGB Regressor.
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Conclusion

OLS Regression Results

OLS Regressicn Results

Dep. Variable: @ R-sguared (uncentered): ©.85 Dep. Variable: @ R-squared (uncentered): 8.795
Model: 0OLS  Adj. R-squared (uncentered): ©.84 Model: 0LS  Adj. R-squared (uncentered): 8.788
Method: Least Squares  F-statistic: 17@." Method: Least Squares  F-statistic: 116.4
Date: Fri, 18 Mar 2022 Prob (F-statistic): 4.85e-15 Date: Fri, 18 Mar 2822 Prob (F-statistic): 1.692-125
Time: 12:56:22  Log-Likelihood: -171.3 Time: 12:57:81  Log-Likelihood: -253.41
No. Observations: 494 AIC: 368. Mo. Observations: 484 AIC: 532.8
Df Residuals: 391 BIC: 428, Df Residuals: 391 BIC: 584.8
Df Model: 13 Df Model: 13
Covariance Type: nonrobust Covariance Type: nonrobust

coef  std err t P>t [@.825 8.973] coef  std err t P> t| [@.825 8.975]
CRIM -98.08899 0.848 -8.284 @.838 -8.1e5 ©.885 CRIM -8.0045 9.859 -9.875 8.948 -9.121 8.112
N -8.8119 .8.028 -9.422 8.673 -@.867 9.0842 N -6.0191 8.034 -8.555 8.588 -8.887 0.049
INDUS @.0061 0.837 0.166 @.868 -8.866 0.879 TINDUS 8.8145 8.@45 @.32@ a.74a8 -8.874 @8.183
CHAS @.8697 0.819 3.632 a.aea @.832 0.108 CHAS 8.9734 9.024 3.1z2e 8.e82 0.027 8.120
NOX -@.1708 9.043 -3.e28 a@.280 -8.256 -9.885 NOX -8.20857 8.853 -3.861 @a.688 -8.31@ -8.181
RM @.2127 0.826 8.222 @.eea @.162 0.264 RM 8.1910 8.e32 6.026 9.808 8.129 09.233
AGE ©.8135 06.634 8.299 6.696 -@.853 8.820 AGE -8.8180 8.a41 -8.262 @.794 -8.892 8.a71
DIS -8.1694 8.842 -4.824 a.ae0 -8.252 -8.887 DIs -8.2258 8.e52 -4.362 @.e0e -8.326 -0.124
RAD @.8517 0.040 1.28@ @.281 -9.0828 8.131 RAD 8.08906 9.e49 1.83e 9.e68 -8.8e7 0.188
TAX -9.1584 9.0844 -3.823 @.200 -9.244 -9.872 TAX -8.1865 8.854 -3.483 a.eal -8.202 -8.@81
PTRATIO -8.2018 0.826 -7.81a a.aea -@.253 -8.151 PTRATIO -8.2306 g.e22 -7.287 a.0ee -8.203 -8.168
B @.8565 9.823 2.508 a.813 a.e12 8.1@1 B @.0652 8.e28 2.302 @.912 9.011 e.119
LSTAT -0.5166 0.033 _15.892 @.000 _a.s81 _9.453 LSTAT -9.5202 8,040 -13.288 a.000 -0.608 -8.451
omnibus: 45,337  Durbin-Watson: 2.876 omnibus: 39.236  Durbin-Watson: 2.e30
Prob{Omnibus): ©.000  Jargue-Bera (JB): 126.050 Prob(Omnibus): @8.080  Jarque-Bera (JB): 143.386
Skew: 8.518 Prob(JB): 5.732-29 Skew: 8.332  Prob(JB): 7.31e-32
Kurtosis: 5.586 Cond. NO. .20 Kurtosis: 5.842  Cond. No. 8.28

Table 2 Random Forest Output Table 1 XGB Regressor Output

Using two regressors (the Random Forest Regressor and XGB Regressor), we find lower status of the
population (LSTAT) is a significant driver of real estate value in Boston. Number of rooms and Crime
Rate are also important, with price decreasing, respectively increasing with Nitric Oxides Concentration,

respectively CHAS.

Overall, the results of the two models are very similar, XGB regressor has a better performance. But there
are some discrepancies in the explain ability analysis of them.
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